IWandering and getting lost:

the architecture of an app activating local communities on dementia issues

Nicklas S. Andersen, PhD Student in CS A
Marco Chiarandini, Asc. Prof. in CS <
Jacopo Mauro, Asc. Prof. in CS

University of Southern Denmark
SEH 2021, June, 2021 Department of Mathematics & Computer Science

1/17

Outline

Sammen Om Demens

Sammen Om Demens (SOD)

- Introduction

B What is SOD?

» An app implemented for a Danish municipality

Sammen Om Demens (SOD)

- Introduction

B What is SOD?

» An app implemented for a Danish municipality

B Motivation:

» Improve the handling of cases where people with dementia get lost
» Use new technological innovations in doing so

Sammen Om Demens (SOD)

- Introduction

B What is SOD?
» An app implemented for a Danish municipality

B Motivation:
» Improve the handling of cases where people with dementia get lost
» Use new technological innovations in doing so

B Goals:

» Create awareness about dementia among ordinary citizens
» Involve ordinary citizens in helping persons with dementia
» Alleviate the anxiety of persons with dementia and caregivers

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application

- Overview

I Sammen Om Demens (SOD)

B The goals are accomplished through
features of the SOD application [)

Person with dementia

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application

Person with dementia

Relative or caregiver

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application

Person with dementia

Relative or caregiver

Volunteer

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application

Person with dementia :
o ¥
b

.....................................

Relative or caregiver

Volunteer

Main SOD features

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application:
» A knowledge bank

Person with dementia

ORYS

Relative or caregiver

- Main SOD features

Volunteer

................................

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application:
» A knowledge bank
» A recreational activity calendar

Person with dementia

Relative or caregiver

Volunteer

Main SOD features

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application:
» A knowledge bank
» A recreational activity calendar
» A help component

Person with dementia

Relative or caregiver

Main SOD features

Volunteer

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application: []
» A knowledge bank
» A recreational activity calendar Person with dementia

» A help component

Relative or caregiver

Volunteer

I

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application: []
» A knowledge bank
» A recreational activity calendar Person with dementia

» A help component

Relative or caregiver

Volunteer

B Backend system requirements:

i}

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application: []
» A knowledge bank
» A recreational activity calendar Person with dementia

» A help component

Relative or caregiver

Volunteer

B Backend system requirements:

» It should be scalable and able to process data
effeciently and reliably

I

Sammen Om Demens (SOD)

- Overview

B The goals are accomplished through
features of the SOD application:
» A knowledge bank
» A recreational activity calendar Person with dementia

» A help component .
Relative or caregiver

Volunteer

B Backend system requirements:

» It should be scalable and able to process data
effeciently and reliably

» It should be maintainable and structurally flexible

Outline

Implementation

Implementation 2 v Kubernetes Custer

]

iOS/Android
Application
A

é@

Ingress Controller

Sync Communication

’
’ .
+ Async Communication

.+ Both

Kubernetes Cluster

Implementation 8 user

]

iOS/Android
Application
A
-~ &
B The entry point of the system is an Ingress @
Controller (@) e Coroler

Sync Communication

’
’ .
+ Async Communication

.+ Both

I m p | ementatlon & User Kubernetes Cluster
D > django @ i
iOS/Android Orchestrator <_>F'ostgreSQLj
Appliﬁaﬂon H Service Database
A4 @
B The entry point of the system is an Ingress @ .
Controller (D raress Corioler

B It redirects traffic to the Orchestrator (2)

; Sync Communication

’
’
+ Async Communication

+"Both

I m p | ementatlon & User Kubernetes Cluster
D ~> django __ [
iOS/Android Orchestrator <_>‘Pos\greSQL
Appliiation o ”Serrv?cer N ‘,D?ta?a,se,
o @
B The entry point of the system is an Ingress @ -
Controller () ngrss Conrler
r
B It redirects traffic to the Orchestrator (2)
B It also reserves a direct route to Additional &
Services (6) it
”djangd o @ i
Photo Service ?Siigaﬁigt Additional Services@ /Sync Communication
m <_> ,' Async Communication
Grafana | Prometheus | N
2 .* Both

Implementation S

[]

Kubernetes Cluster
®
> django @

iOS/Android Orchestrator PostgreSQL: i
Appliﬁaﬂon » Service Database
Lo
B The Orchestrator (2) routes requests to @ =E
other microservices through Redis (9) noress Comoter S
S -
Redis g_g
‘ jango
‘;P"mo Sorves Da;‘g;:s% { Additional Services@ ;Sync Communication
m 4_) H ,I Async Communication
Grafana Prometheus’ .
.* Both

Implementation

B The Orchestrator (2) routes requests to
other microservices through Redis (9)

B It handles the creation, activation, deletion,
update, and retrieval of users

: (5)
o~ User -@ Kubernetes Cluster
D > django @ ‘
iOS/Android Orchestrator PostgreSQL: |
Appliﬁaﬂon » Service Database
SRC
Ingress Controller @
=)
e -
Redis &8
T2
)
22
g £
ljango ‘
{Photo S PPostgreSQL
jiPhoto Senvice ‘S;Z;a;g‘ Additional Services@

Grafana | ‘Prometheus

; Sync Communication

’
’
+ Async Communication

-+ Both

Implementation

B The Orchestrator (2) routes requests to
other microservices through Redis (9)

B It handles the creation, activation, deletion,
update, and retrieval of users

B It makes it easy to authorize and
authenticate a user in a single place

(J
o User

[

iOS/Android
Application
A

Ingress Controller

ljango
: Photo Service;

S 2

<

®

Access to Grafana_}
& Photo Service

PostgreSQL |
:Database

Kubernetes Cluster
django

Orchestrator
> Service

to Redi

PostgreSQL: |
Database

Additional Services@

Grafana | ‘Prometheus

; Sync Communication

’

’
+ Async Communication

-+ Both

Implementation & vser D unemetes o
D > django @ ‘
iOS/Android Orchestrator <_>F'ostgreSQL:j
Appliﬁaﬂon >) ngviné - 7 I?atrabrastre
@
B The Orchestrator (2) routes requests to @ =E
other microservices through Redis (9) noress Comoter S
-
B It handles the creation, activation, deletion, é ©
update, and retrieval of users reds B8
B It makes it easy to authorize and 12
. . . S
authenticate a user in a single place
. jango | [
B It handles WebSocket connections oo semiepostgesar. PPy R | /A —
m 4_) ,I Asynccammumca\lon
Grafana Prometheus’ N
.* Both

Implementation

B The help component is implemented by (3)

and (9

o User

O

Kubernetes Cluster
....... > djan go

PostgreSQL! |

iOS/Android Orchestrator

Appliﬁaﬂon » Service Database !
SO
@ L b
< Anomaly Detection‘l,

Ingress Controller Z ' Helper Service
) :
. PostgreSQL !
django Database |

Access to Grafan
& Photo Servi

' django
 /Photo Service.

yAnomaly Detection
Service

; Sync Communication

’
’
+ Async Communication

.+ Both

Implementation

B The help component is implemented by (3)

and (9

B Microservice (3) acts as a database buffer
and handles bulk operations on raw data

(]
o User
iOS/Android
Application
A

Ingress Controller

' django
1 Photo Service;

SO
S

©)

Kubernetes Cluster

....... > django

Access to Grafana_:

‘PosigreSQL
Database : |

PostgreSQL:

Orchestrator
> Service Database !
> django
‘g Anomaly Detection [,
DE Helper Service
. PostgreSQL!
django Database |
_>Anomaly Detection
Service
£ -
=
5
4]
2
2
a
£
Additional Services@
))

Prometheus’

; Sync Communication

’
’
+ Async Communication

.+ Both

Implementation

B The help component is implemented by (3)

and (9

B Microservice (3) acts as a database buffer
and handles bulk operations on raw data

B Microservice (4) handles coordination of
function execution triggered through the
OpenFaaS Gateway (7)

e [
o User % ,KL,jb,?,r,n,e,‘,es,,CI,USter -
0 |~ » django ‘3
iOS/Android Orchestrator PostgreSQL:
Appliﬁaﬂon » Service Database !
@
@ > django _ 2
| i <t g Anomaly Detection |, w .
traress Convollr £ per sevee | &
L PostgreSQL: o o A
) django Database | '
'
a yAnomaly Detection Y @
(M Ser;/lce
Redis 88 R Vi (
g%’ ------------------ > -
68 OpenFaaS
g2 Gateway
22
o
gﬂlf
”p:\ija:go st SQL; /
| PPhoto Service: PostgreSQL | - .
Datobase Additional Serwces@ Sync Communication

Grafana |

Prometheus’

’
’
+ Async Communication

.+ Both

Implementation

B The help component is implemented by (3)
and (9

B Microservice (3) acts as a database buffer
and handles bulk operations on raw data

B Microservice (4) handles coordination of
function execution triggered through the
OpenFaaS Gateway (7)

B OpenFaa$S provides the infrastructure for
implementing the detection algorithms

(]
o User
iOS/Android
Application
A

O

Ingress Controller

8 o

Helper Service

Kubernetes Cluster

....... > django i

Orchestrator PostgreSQL:

» Service Database |
> django

Anomaly Detection |, @

. PostgreSQL!
) django Database |
yAnomaly Detection
< Service
© B
Redis 88 ool
T2
03
Lo
82
o
g £
Hp:‘ijﬂl;lgo Post SQL;
| Photo Service PostgreSQL: ! - .
Datobase Additional Serwces@

Prometheus’

al- |

OpenFaaS
Gateway

; Sync Communication

’
’
+ Async Communication

.+ Both

Kubernetes Cluster
....... > djan go i

Orchestrator PostgreSQL
> Service Database

Implementation 2 v

[]

iOS/Android
Application
A

. y . . © @ .
B The recreational activity calendar is @ o dla"9°_ - : 2
i Ingress Controller An:emlag g:::ic::'ﬂ') @ w
implemented by (5) & &

PostgreSQL; '

T dlngo "y S

_>Anomaly Detection
Service

to Red

Redis £8 At R
-] OpenFaaS
z § django i Gateway
g=i Recreational {PostgreSQL:

django

 /Photo Service.

; Sync Communication

’
’
+ Async Communication

.+ Both

Outline

Experimental Setup

10 / 17

Experimental Setup
- System Configuration

B Microsoft Azure Setup:

Master Node Worker Node

VN

Standard D16v4 VM:
- 16 vCPUs
- 32 GB RAM

11/

/

Experimental Setup
- System Configuration

B Microsoft Azure Setup:

» Kubernetes cluster consisting of a master and a
worker node

Master Node Worker Node

VN

Standard D16v4 VM:
- 16 vCPUs
- 32 GB RAM

11/

/

Experimental Setup
- System Configuration

B Microsoft Azure Setup:
» Kubernetes cluster consisting of a master and a
worker node
» General-purpose VMs running Ubuntu and using
standard HDD storage

Master Node Worker Node

VN

Standard D16v4 VM:
- 16 vCPUs
- 32 GB RAM

Experimental Setup
- System Configuration

B Microsoft Azure Setup: . .

» Kubernetes cluster consisting of a master and a
worker node
» General-purpose VMs running Ubuntu and using
standard HDD storage
Master Node Worker Node

B Kubernetes autoscaling configuration: D \|—|/

Standard D16v4 VM:
- 16 vCPUs
- 32 GB RAM

11 /17

Experimental Setup
- System Configuration

B Microsoft Azure Setup: di di di
» Kubernetes cluster consisting of a master and a Jango django django

worker node django django
» General-purpose VMs running Ubuntu and using di
standard HDD storage jJango

Microservices

B Kubernetes autoscaling configuration:

» Min & max number of replicas ° ° °
Scale out Scale in
— — S —
-
m

OpenFaaS Functions v

11 /17

Experimental Setup
- System Configuration

B Microsoft Azure Setup: di di di
» Kubernetes cluster consisting of a master and a Jango django django

worker node django django
» General-purpose VMs running Ubuntu and using di
standard HDD storage jJango
Microservices

B Kubernetes autoscaling configuration:
» Min & max number of replicas W W w)
» CPU and memory resource requests Scale out p— = - Scale in

OpenFaaS Functions v

11 /17

Experimental Setup
- System Configuration

B Microsoft Azure Setup: di di di
» Kubernetes cluster consisting of a master and a Jango django django

worker node django django
» General-purpose VMs running Ubuntu and using di
standard HDD storage jJango
Microservices

B Kubernetes autoscaling configuration:
» Min & max number of replicas 'M W ‘N _
» CPU and memory resource requests Scale out . . Scale in
» Autoscaling triggered based on: w W

OpenFaaS Functions v

11 /17

Experimental Setup
- System Configuration

B Microsoft Azure Setup:

» Kubernetes cluster consisting of a master and a

django django django

worker node django django
» General-purpose VMs running Ubuntu and using di
standard HDD storage jJango

Microservices

B Kubernetes autoscaling configuration:

» Min & max number of replicas 'M W ‘N
» CPU and memory resource requests Scale out . . Scale in
» Autoscaling triggered based on: L -
» CPU utilization for microservices a E
|
OpenFaaS Functions v

11 /17

Experimental Setup
- System Configuration

B Microsoft Azure Setup:

» Kubernetes cluster consisting of a master and a

django django django

worker node django django
» General-purpose VMs running Ubuntu and using di
standard HDD storage jJango

Microservices

B Kubernetes autoscaling configuration:

» Min & max number of replicas W W w
» CPU and memory resource requests Scale out 1 — - Scale in
» Autoscaling triggered based on: e B
» CPU utilization for microservices a E
» Requests per second for OpenFaa$S functions E
e
OpenFaaS Functions v

11 /17

Experimental Setup
- Load Test Description

€ dango diango

\ | v . Ingress Detection @ : Detection : | OpenFaaS !
D D D . Controller Helper Service | Service @ | Gateway
iOS/Android ¥ Y Voo
Application T 3 ..
“django D . , e

: —> Y «------ ="

:Orchestrator 3] OpenFaa$s |

Service } Redis Functions_

12 /17

Experimental Setup
- Load Test Description

€ dango diango

\J | v ' Ingress Detection @ Detection : ! OpenFaas !
D D D ._Controller Helper Service | Service imGat%waym}
iOS/Android ¥ Y Voo
Application | g= } T P
“django D . , e

‘ — Y ------ - =

:Orchestrator 3] OpenFaa$s |

Service ; Redis Functions |

B Load tests target the infrastructure used by the help component

12 /17

Experimental Setup
- Load Test Description

€ dango diango

\J | v ' Ingress Detection @ Detection : ! OpenFaas !
D D D | Controller Helper Service | Service @ | Gateway |

- ...
iOS/Android ¥ Y Voo
Application T 3 p—
“django D . , e

‘ — Y ------ - =

EOrches.trator 3 Redi OpenFaa$ |

Service 3 edis Functions_

B Load tests target the infrastructure used by the help component

B They measure the performance of the system under the following conditions:

12 /17

Experimental Setup
- Load Test Description

6 domgo dango

: aly , =

\J | v ' Ingress Detection @ Detection : ! OpenFaas !
D D D ._Controller Helper Service | Service @ | Gateway |
iOS/Android ¥ Y Voo
Application T 3 ..
“django D . , e

: —> Y «------ ="

:Orchestrator 3] OpenFaa$s |

Service ; Redis Functions |

B Load tests target the infrastructure used by the help component

B They measure the performance of the system under the following conditions:
» HTTP POST requests are sent to the backend system every 7 € U(1,5) seconds

12 /17

Experimental Setup
- Load Test Description

6 domgo dango

: aly , =

\J | v ' Ingress Detection @ Detection : ! OpenFaas !
D D D ._Controller Helper Service | Service @ | Gateway |
iOS/Android ¥ Y Voo
Application T 3 ..
“django D . , e

: —> Y «------ ="

:Orchestrator 3] OpenFaa$s |

Service ; Redis Functions |

B Load tests target the infrastructure used by the help component

B They measure the performance of the system under the following conditions:
» HTTP POST requests are sent to the backend system every 7 € U(1,5) seconds
» Invoked functions compute a moving average of the incoming location data

12 /17

Outline

Results

13 / 17

Active Users Active Users

© 10000 —— Active Users © 10000 —— Active Users
o} 3
3 3
2 soo0 £ sooo
i1 S
< <
5 R ts Per Second (s) o ° R ts Per Second (s)
equests Per Second (s equests Per Second (s
S 3000 q S 3000 a
2 —— Requests Per Second 3 —— Requests Per Second
¥ 2000 Failures Per Second £ 2000 —— Failures Per Second
& &
£ 1000 #1000
il 7
8 8
g o g o
< Response Time in Milliseconds L3 Response Time in Milliseconds
7500 = = 7500 5 =
g —— Median Response Time g —— Median Response Time
= 5000 —— 95% Percentile ¥ 5000 —— 95% Percentile
2 b1
2 2
g 2500 8 2500
8 8
e 0 o« o
Orchestrator Service CPU Utilization Orchestrator Service CPU Utilization
10 10
3 3
& s g s
s s
o : y e o y : . y
20 Anomaly Detection Service CPU Utilization 20 Anomaly Detection Service CPU Utilization
15 15
@ Py
210 Z 10
o o
s s
0.0 " 0.0 —
2o OpenFaa$ CPU Utilization 2o OpenFaa$ CPU Utilization
1.5
oy
210
RS
s
0.5
0.0
00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45
Time Time

14

Outline

Conclusion & Future Work

15 / 17

I Conclusion & Future Work

B We designed the backend system of SOD relying on:

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:

» Microservices and serverless computing

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:

» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

» The architecture is able to cope with different types of load and scale appropriately

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

» The architecture is able to cope with different types of load and scale appropriately
» The architecture is able to handle data efficiently and reliably

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

» The architecture is able to cope with different types of load and scale appropriately
» The architecture is able to handle data efficiently and reliably

B We need to extended and improve the functionalities:

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system
B We confirmed with load tests that:
» The architecture is able to cope with different types of load and scale appropriately

» The architecture is able to handle data efficiently and reliably

B We need to extended and improve the functionalities:
» Implement artificial intelligence techniques

16 / 17

Conclusion & Future Work

B We designed the backend system of SOD relying on:
» Microservices and serverless computing
» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

» The architecture is able to cope with different types of load and scale appropriately
» The architecture is able to handle data efficiently and reliably

B We need to extended and improve the functionalities:
» Implement artificial intelligence techniques
» Build out the OpenFaa$S function execution pipeline

16 / 17

Thank you for your attention!

17 / 17

	Sammen Om Demens
	Implementation
	Experimental Setup
	Results
	Conclusion & Future Work

