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Sammen Om Demens (SOD)
- Introduction

� What is SOD?
I An app implemented for a Danish municipality

� Motivation:
I Improve the handling of cases where people with dementia get lost

I Use new technological innovations in doing so

� Goals:
I Create awareness about dementia among ordinary citizens

I Involve ordinary citizens in helping persons with dementia

I Alleviate the anxiety of persons with dementia and caregivers
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� Backend system requirements:

I It should be scalable and able to process data
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Implementation

� The entry point of the system is an Ingress
Controller 1○

� It redirects traffic to the Orchestrator 2○

� It also reserves a direct route to Additional
Services 6○
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authenticate a user in a single place
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and handles bulk operations on raw data
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function execution triggered through the
OpenFaaS Gateway 7○
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Implementation
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implemented by 5○
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Experimental Setup
- System Configuration

� Microsoft Azure Setup:

I Kubernetes cluster consisting of a master and a
worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:

I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions
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Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:

I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data
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Conclusion & Future Work

� We designed the backend system of SOD relying on:

I Microservices and serverless computing

I  Structurally flexible and maintainable system

� We confirmed with load tests that:

I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline
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Thank you for your attention!
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