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- Introduction

B What is SOD?
» An app implemented for a Danish municipality

B Motivation:
» Improve the handling of cases where people with dementia get lost
» Use new technological innovations in doing so

B Goals:

» Create awareness about dementia among ordinary citizens
» Involve ordinary citizens in helping persons with dementia
» Alleviate the anxiety of persons with dementia and caregivers
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- Overview

B The goals are accomplished through
features of the SOD application:
» A knowledge bank
» A recreational activity calendar Person with dementia

» A help component .
Relative or caregiver

Volunteer

B Backend system requirements:

» It should be scalable and able to process data
effeciently and reliably

» It should be maintainable and structurally flexible
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B The help component is implemented by (3)
and (9

B Microservice (3) acts as a database buffer
and handles bulk operations on raw data

B Microservice (4) handles coordination of
function execution triggered through the
OpenFaaS Gateway (7)

B OpenFaa$S provides the infrastructure for
implementing the detection algorithms
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B Load tests target the infrastructure used by the help component

B They measure the performance of the system under the following conditions:
» HTTP POST requests are sent to the backend system every 7 € U(1,5) seconds
» Invoked functions compute a moving average of the incoming location data
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» ~~ Structurally flexible and maintainable system

B We confirmed with load tests that:

» The architecture is able to cope with different types of load and scale appropriately
» The architecture is able to handle data efficiently and reliably

B We need to extended and improve the functionalities:
» Implement artificial intelligence techniques
» Build out the OpenFaa$S function execution pipeline
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