
Wandering and getting lost:
the architecture of an app activating local communities on dementia issues

Nicklas S. Andersen, PhD Student in CS
Marco Chiarandini, Asc. Prof. in CS
Jacopo Mauro, Asc. Prof. in CS

SEH 2021, June, 2021
University of Southern Denmark

Department of Mathematics & Computer Science

1 / 17

Outline

1 Sammen Om Demens

2 Implementation

3 Experimental Setup

4 Results

5 Conclusion & Future Work

2 / 17

Sammen Om Demens (SOD)
- Introduction

� What is SOD?
I An app implemented for a Danish municipality

� Motivation:
I Improve the handling of cases where people with dementia get lost

I Use new technological innovations in doing so

� Goals:
I Create awareness about dementia among ordinary citizens

I Involve ordinary citizens in helping persons with dementia

I Alleviate the anxiety of persons with dementia and caregivers

3 / 17

Sammen Om Demens (SOD)
- Introduction

� What is SOD?
I An app implemented for a Danish municipality

� Motivation:
I Improve the handling of cases where people with dementia get lost

I Use new technological innovations in doing so

� Goals:
I Create awareness about dementia among ordinary citizens

I Involve ordinary citizens in helping persons with dementia

I Alleviate the anxiety of persons with dementia and caregivers

3 / 17

Sammen Om Demens (SOD)
- Introduction

� What is SOD?
I An app implemented for a Danish municipality

� Motivation:
I Improve the handling of cases where people with dementia get lost

I Use new technological innovations in doing so

� Goals:
I Create awareness about dementia among ordinary citizens

I Involve ordinary citizens in helping persons with dementia

I Alleviate the anxiety of persons with dementia and caregivers

3 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application

I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application

I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application

I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application

I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application

I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:

I It should be scalable and able to process data
effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:
I It should be scalable and able to process data

effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Sammen Om Demens (SOD)
- Overview

� The goals are accomplished through
features of the SOD application:
I A knowledge bank

I A recreational activity calendar

I A help component

� Backend system requirements:
I It should be scalable and able to process data

effeciently and reliably

I It should be maintainable and structurally flexible

4 / 17

Outline

1 Sammen Om Demens

2 Implementation

3 Experimental Setup

4 Results

5 Conclusion & Future Work

5 / 17

Implementation

� The entry point of the system is an Ingress
Controller 1○

� It redirects traffic to the Orchestrator 2○

� It also reserves a direct route to Additional
Services 6○

6 / 17

Implementation

� The entry point of the system is an Ingress
Controller 1○

� It redirects traffic to the Orchestrator 2○

� It also reserves a direct route to Additional
Services 6○

6 / 17

Implementation

� The entry point of the system is an Ingress
Controller 1○

� It redirects traffic to the Orchestrator 2○

� It also reserves a direct route to Additional
Services 6○

6 / 17

Implementation

� The entry point of the system is an Ingress
Controller 1○

� It redirects traffic to the Orchestrator 2○

� It also reserves a direct route to Additional
Services 6○

6 / 17

Implementation

� The Orchestrator 2○ routes requests to
other microservices through Redis 9○

� It handles the creation, activation, deletion,
update, and retrieval of users

� It makes it easy to authorize and
authenticate a user in a single place

� It handles WebSocket connections

7 / 17

Implementation

� The Orchestrator 2○ routes requests to
other microservices through Redis 9○

� It handles the creation, activation, deletion,
update, and retrieval of users

� It makes it easy to authorize and
authenticate a user in a single place

� It handles WebSocket connections

7 / 17

Implementation

� The Orchestrator 2○ routes requests to
other microservices through Redis 9○

� It handles the creation, activation, deletion,
update, and retrieval of users

� It makes it easy to authorize and
authenticate a user in a single place

� It handles WebSocket connections

7 / 17

Implementation

� The Orchestrator 2○ routes requests to
other microservices through Redis 9○

� It handles the creation, activation, deletion,
update, and retrieval of users

� It makes it easy to authorize and
authenticate a user in a single place

� It handles WebSocket connections

7 / 17

Implementation

� The help component is implemented by 3○
and 4○

� Microservice 3○ acts as a database buffer
and handles bulk operations on raw data

� Microservice 4○ handles coordination of
function execution triggered through the
OpenFaaS Gateway 7○

� OpenFaaS provides the infrastructure for
implementing the detection algorithms

8 / 17

Implementation

� The help component is implemented by 3○
and 4○

� Microservice 3○ acts as a database buffer
and handles bulk operations on raw data

� Microservice 4○ handles coordination of
function execution triggered through the
OpenFaaS Gateway 7○

� OpenFaaS provides the infrastructure for
implementing the detection algorithms

8 / 17

Implementation

� The help component is implemented by 3○
and 4○

� Microservice 3○ acts as a database buffer
and handles bulk operations on raw data

� Microservice 4○ handles coordination of
function execution triggered through the
OpenFaaS Gateway 7○

� OpenFaaS provides the infrastructure for
implementing the detection algorithms

8 / 17

Implementation

� The help component is implemented by 3○
and 4○

� Microservice 3○ acts as a database buffer
and handles bulk operations on raw data

� Microservice 4○ handles coordination of
function execution triggered through the
OpenFaaS Gateway 7○

� OpenFaaS provides the infrastructure for
implementing the detection algorithms

8 / 17

Implementation

� The recreational activity calendar is
implemented by 5○

9 / 17

Outline

1 Sammen Om Demens

2 Implementation

3 Experimental Setup

4 Results

5 Conclusion & Future Work

10 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:

I Kubernetes cluster consisting of a master and a
worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:

I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:

I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:

I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:

I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:
I Min & max number of replicas

I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:
I Min & max number of replicas
I CPU and memory resource requests

I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:
I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:
I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- System Configuration

� Microsoft Azure Setup:
I Kubernetes cluster consisting of a master and a

worker node

I General-purpose VMs running Ubuntu and using
standard HDD storage

� Kubernetes autoscaling configuration:
I Min & max number of replicas
I CPU and memory resource requests
I Autoscaling triggered based on:

I CPU utilization for microservices

I Requests per second for OpenFaaS functions

11 / 17

Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:

I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data

12 / 17

Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:

I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data

12 / 17

Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:

I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data

12 / 17

Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:
I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data

12 / 17

Experimental Setup
- Load Test Description

� Load tests target the infrastructure used by the help component

� They measure the performance of the system under the following conditions:
I HTTP POST requests are sent to the backend system every τ ∈ U(1, 5) seconds

I Invoked functions compute a moving average of the incoming location data

12 / 17

Outline

1 Sammen Om Demens

2 Implementation

3 Experimental Setup

4 Results

5 Conclusion & Future Work

13 / 17

0

5000

10000

Ac
tiv

e U
se

rs

Active Users
Active Users

0

1000

2000

3000

Re
qu

es
ts

Pe
r S

ec
on

d Requests Per Second (s)
Requests Per Second
Failures Per Second

0

2500

5000

7500

Re
sp

on
se

 Ti
m

e

Response Time in Milliseconds
Median Response Time
95% Percentile

0

5

10

vC
PU

s

Orchestrator Service CPU Utilization

0.0

0.5

1.0

1.5

2.0

vC
PU

s

Anomaly Detection Service CPU Utilization

00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45
Time

0.0

0.5

1.0

1.5

2.0

vC
PU

s

OpenFaaS CPU Utilization

0

5000

10000

Ac
tiv

e U
se

rs

Active Users
Active Users

0

1000

2000

3000

Re
qu

es
ts

Pe
r S

ec
on

d Requests Per Second (s)
Requests Per Second
Failures Per Second

0

2500

5000

7500

Re
sp

on
se

 Ti
m

e

Response Time in Milliseconds
Median Response Time
95% Percentile

0

5

10

vC
PU

s

Orchestrator Service CPU Utilization

0.0

0.5

1.0

1.5

2.0

vC
PU

s

Anomaly Detection Service CPU Utilization

00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45
Time

0.0

0.5

1.0

1.5

2.0

vC
PU

s

OpenFaaS CPU Utilization

14 / 17

Outline

1 Sammen Om Demens

2 Implementation

3 Experimental Setup

4 Results

5 Conclusion & Future Work

15 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:

I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:

I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:

I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:

I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:

I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:
I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:
I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:
I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:

I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:
I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:
I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Conclusion & Future Work

� We designed the backend system of SOD relying on:
I Microservices and serverless computing

I Structurally flexible and maintainable system

� We confirmed with load tests that:
I The architecture is able to cope with different types of load and scale appropriately

I The architecture is able to handle data efficiently and reliably

� We need to extended and improve the functionalities:
I Implement artificial intelligence techniques

I Build out the OpenFaaS function execution pipeline

16 / 17

Thank you for your attention!

17 / 17

	Sammen Om Demens
	Implementation
	Experimental Setup
	Results
	Conclusion & Future Work

